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OSCILLATIONS OF PLATES UNDER THE ACTION OF CONCENTRATED LOADS 
IN AN ACOUSTIC MEDIUM* 

V.A. GOLOVANOV, A.L. POPOV, and G.N. CHEBNYSHEV 

Steady-state oscillations induced by concentrated forces actingoninfiniteisotropic 
and orthotropic plates in contact with a liquid are considered. On the basis of an 
asymptotic integration of the equations, an approximation method for solving the 
problem is proposed. Explicit expressions are obtained for the first approximations 
of deflections of the plates and the acoustic pressure in the medium. In the case 
of an isotropic plate, numerical integration of the equations in an exact formula- 
tion is also carried out and a comparison with the approximate analytic solution 
given. The isotropic plate problem has been previously considered /l-44/.Our study 
complements these results, and makes it possible to break up the initial problem in- 
to several simpler problems and to identify the structure of the integrals and 
simplify the solution method. As a result we are able to generalize our method to 
boundary value problems. A solution of the orthotropic plate problem (which has not 
previously been considered) is obtained. 

1. Steady-state oscillations of an infinite isotropic plate in contact with a liquid 
and affected by a specified harmonic load q(z,y)emiwt may be described by the following system 
of equations (the time factor is omitted everywhere below): 

h,2A,Z~ - h% = (ZEh)-‘(q - P I,_,), AP + k*P = 0 
3P 

dz r=o 
= dpw, 

h? 
jL*a = 3 (I_ +) 9 h=$ kc+ 

(1.1) 

Here wand h are the deflection and half-width of the plate; E, Y, and po, Young's modulus, 
the Poisson coefficient, and the density of the material of the plate; p and c, density of 
liquid and speed of sound; P, acoustic pressure; A and A,, Laplacian operators in space and 
on the surface of the plate; 0, oscillation frequency; x,y rectangular Cartesian coordinates 
in the middle plane of the plate; and z, normal to the plate directed into the liquid. The 
exciting load q(s, y) constitutes either a linerly concentrated force QS(x -zO) referred to 
a unit of length or a concentrated force QS(x -.rO,y - y,,), referred to a unit of area. 

The system of equations (1.1) contains the coefficient h,2 in the case of higher deriva- 
tives. In plate and shell theory, its ratio to the square of the characteristic linear dimen- 
sion is taken as a small parameter. The choice of the characteristic dimension is not impor- 
tant. For the sake of definiteness, the wavelength 1 at the coincidence frequency/2/,atwhich 
the phase velocity of the free deflection waves in the plate is equal to the speed of sound in 
the liquid, may be suggested. The introduct of the small dimensionless parameter 
(l/k) (c/co) in (1.1) is made by "stretching" the coordinates .Z 

h, I 1= 

and y by a factor of I-'I:. Here 
the form of the equations (1.1) remains unchanged. 

Because of the presence of the small parameter , it is possible to construct asymptotic 
integration processes, that is so-called first and second iterational processes, by means of 
which the slowly and rapidly varying components of the solution may be correspondingly deter- 
mined. With reference to equations of shell theory, 
structed /5/ on the right side using a 

such processes have been previously con- 
8-function. In this case, where the equation of 

oscillation of the plate with a d-function on the right side is complemented with the equa- 
tion of the oscillation of the liquid, the problem must be stated somewhat differently.However, 
the basic approach to the construction of iterational processes is retained. Wewillconstruct 
a solution of the initial problem following this method, and then estimate the error of the 
solution. 

Let us first consider the oscillation problem for a plate resting on a liquid and sub- 
jected to a linearly concentrated force applied along the line r = x0. In this case, the 
problem is two-dimensional. In the first approximation, we represent the pressure of the 
liquid near the plate in the form /6/ 
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P (x, 2) = P (x, 0) e-2 11.2) 

(Q is an unknown parameter). Where (a] is high enough, this representation corresponds to 
rapidly varying boundary oscillations of the liquid. 

We substitute expression (1.2) in equation (1.1). Using the relation between the normal 
derivative of pressure on the surface of the plate and the deflection, we express P(x,O) in 
equations (1.1) in terms of 1u. The system of equations (at z = 0) 

h*2A& - h?(l + a_‘g) w = (zEh)-‘@ (2 - x0), g = p (2hpJ’ (1.3) 
4,W + (n' + k2) W = 0, P (s, 0) = --w$W-%a, A2 = avdx? 

is obtained, in which the compatibility condition is given by the equality 

(a' + k2)2 z a04 (1 + a-‘g), Q,4 _r h?/l*-c (1.4) 

which constitutes a fifth-degree algebraic equation in (I. 
From an analysis of equation (1.41, it is clear that one of its roots a, - Q,, two of its 

complex-conjugate roots a2. aR = a2 have positive real part, further 1 a2 I -a,, Re+((a,, and 
two of its complex-conjugate roots have negative real part. The roots al,*,:, correspond, by 
(1.21, to an acoustic pressure component that attenuates with distance from the plate,andthe 
root with negative real part corresponds to the increase in the component. Belowwewillprove 
that the increasing pressure component exexts a weak influence on the plate's modulus of flex- 
ure. In constructing the first approximation of the solution, therefore, we will take into 
account only the roots a1,?,3. 

With each root a1,2,:, , we may associate definite integrals of equations (1.3). Integrals 
that oscillate about the x-axis correspond to the root a,, while integrals that attenuateby 
an oscillating exponential law with distance from the line of action of the force correspond 
to the roots a?,3 - The general solutions (w+, P+ with s 2 s,,? II:_. p_ if s Sz,) satisfying 
the condition for diverging waves has the form 

The constants Cj’{j = 1,2,3) are determined under the assumption that the solutions (1.5) are 
conjugate along the line of action of the force: 

$) + -21_ *CR) _7 &&n-l, f7il"'(,z,O)- P?(s,O)=O, D= 2Ehh*" 

Once we have determined the constants cj*, we arrive at an expression for the deflection: 

This equation has two terms, the first of which corresponds to a diverging, undampedwave, 
while the second, to a standing wave that rapidly damped with distance from the lineofaction 
of the force. 

Let us now consider the case of a concentrated force. A zero-order Hankel function of 
the first kind Hs'(in the case of a,) and modified Hankel functions I<, (in the case of 

a5,J which depend upon the polar radius r, are integrals of equation (1.3) correspondingto 
the roots aj(j = 1,2,3) and which satisfy the condition for diverging waves. The general solu- 
tion. 

2s (r) _ c~~*(‘)(~~) + c&(s,r) + C&&‘) (1.7) 

has, in general, a logarithmic singularity at the point of application of the force. However, 

it is known that the selection of a plate in a vacuum has a principal singularity of the form 
r,,* In rl, /5/, where r0 is the dimensionless radius. By (1.3), the pressure singularity P(z, 0) 
is of the same order of magnitude. Therefore, the coefficients of In r0 in the expansion of 
the functions w and P(x,U) in a neighborhood of the point of application of the force must 
vanish, while the coefficient of the principal singularity tclis a known value x /7/. 

These requirements lead to the system of equations 

C," f C$ _t c:{ :z 0, Sn%?10 + Sl%$ -I- SqQJ = --Ax, c,,, = -SC-'c, (1.8) 

u;'cn _t a;'c? + n;'c, = 0, x =(xnD)-' Q 
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Substituting the constants Cj determined from these conditions in (1.7) and taking into 
account the relation between the deflection and pressure (1.3), we obtain an approximate solu- 

tion of the problem in the form 

lo(r)= 4x&' [i(n/Z) t~~H~'(br)--Im(b&O(sl, r))] (1.9) 

Let us compare this solution with previously published solutions of the problem. Westart 
with the asymptotic solution of (1.9) for the case of great distances between the point of 
application of the force (at kr$~==,l) and the asymptotic curve obtained by the saddle-point 
method /4/. 

The asymptotic expression for P(r,z.) obtained from (1.9) in the case of kr>S may be writ- 
ten in the form 

P (r, 2) = -ibliaQ/(4hh,‘a,d,li2nbr) eq Ii (br - n/4) - alz] (1.10) 

The asymptotic curve of a surface pressure wave has the form /4/ 

P(r, z)*-g” 
91" - VP1 - spa = 0, s = gh,c&, p = g (ks)- 

(1.11) 

These expressions for the values of the wave thickness Z/;/L under which $si, yield ex- 
tremely close numerical results. When fi<l, formula (1.11) is not applicable, whereasnosuch 
constraint applies in the case of formula (1.11). This asymptotic formula becomesmoreprecise 
with increasing kh. 

The size of the plate deflection determined from (1.9) at the point of application ofthe 
force was compared by means of the formulas 

w (0) = Re IU (0) + i Im IO (O), Im m (0) = Znilh&,-’ 
Re ,V (0) = -4xd,-1 Im [b,,ln (bs,-‘)I 

(1,121 

to the deflection induced by a force as found in /l/. A comparison for the case of a platein 
contact with water (pJp= 7,s) showed that the values of the modulus of deflection become closer 
together with the increasing wave half-width of the plate kh, The greatest divergence is 
found in the case of the minimal values kh= 0.005 found in the computations, and amounts to 
10.6%. 

Our solution (1.9) was also compared to a numerical solution of the initial problem (1.1) 
in the case of a concentrated force. The values Pand w were computed using the formulas 

(1.13) 

obtained by means of the Hankel transformations /l/. In (1.131, J, is a zero-order Bessel 
function of a complex argument. 

Results of computations of the deflection at the point of application of a force are 
presented below, where "a,~~ and waO,wIO denote the real and imaginary parts of the deflection 
computed using formulas (1.12) and (1.13) and referred to 2h and multiplied by a factor of 
106. 

2kh 0.01 0.05 0.10 0.15 0.20 
% 308 32 IO 5 3 
WI -4711 --1113 -566 -400 -304 
w RO 884 182 93 61 44 
wp -4252 --104f -564 -395 -306 

It is clear that the values of /'~a[ are much less than I “1 I - The imaginary part is also 
greater than the normal derivative of the pressure of the liquid on the plate surface. 

The solid cruveinFig.1 denotes the real and imaginary partsof thedimensionlesspressure 
P* = PR*+iPI*,P* = P/(kgQ) plotted as a function of z at r =O and kh= 0.1, as computed using form- 
ulas (1.13). 
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Fig.1 

These computations show that the real part of the pres- 
sure on the plate surface and the real partofthedeflection 
corresponding to it need not be taken into accountinafirst 
approximation when determining the modulus of deflectionnear 
the point of application of the force. 

The imaginary part of the deflection determined using 
(1.12) are close to results of numerical computations. The 
divergence between them amounts of 10.8% at 2kh= G.01, and 
decreases with an increase in kh, amounting to 0.7% when 
k/z = 0.1 * In determining the real part of the deflection,the 
error in (1.12) is significant. This may be attributed to 
the fact that its magnitude is small, not exceeding the er- 
ror of the first approximation of the solution of (1.12). 

To correctly determine the real part of the deflection, it is necessarytotakeinto ac- 
count the slowly varying component of the solution. According to the asymptotic method of in- 
tegration, the first approximation of this component may be determined from the systemof equa- 
tions (1.1) by setting the coefficient L,? of the higher derivativesequaltozero.Theequation 
of the plate oscillations and nonflowing conditition thereby reduced to the condition (at 2 ~0) 

-g-‘ilP/d; + P (2, y, 0) = Qb (2, !/) (1.14) 

which turns the determination of the pressure P into a boundary-value problem, independent of 
the plate problem. 

Thus, the asymptotic method of integration breaks up the initial problem of the compati- 
ble oscillations of a plate and liquid into two independent problems: (1) short-wave plate 
oscillations accompanied by boundary oscillations of the liquid, and (2) long-wave oscilla- 
tions of the liquid. 

The pressure field in the liquid was computed using formulas (1.13) in the case of both 
the complete equations of oscillations of the plate (1.1) as well as for the degenerate equa- 
tions (h,:-0). A comparison of the results of these computations confirm the correctnessofthe 
asymptotic representation of the solution of the Helmholtz equation with boundary condition 
(1.14) as the slowly varying components of the exact solution of the initial problem. The 
solid curves in Fig.1 show the real and imaginary parts of the pressure computed for the case 
of a degenerate boundary condition (1.14). Clearly, the divergence from the exact values of 
the corresponding components is substantial only near the plate. When kz>2, it becomes 

negligibly small. Thus, the asymptotic approach may be used to compute the pressure in a 

liquid, beginning at some distance from the plate, independent of the computation of the type 
of oscillations of the plate. 

The near pressure field may be computed using the asymptotic formula (1.9). However, it 

must be borne in mind that when ZfO, expression (1.9) for P has a logarithmic singularity 
with respect to 7. The coefficient of Inr,, behaves with increasing I first as an increasing 
function, and then attenuates exponentially. Consequently, expression (1.9) for P coincides 
with the attenuating component of the rapidly varying part of the exact solution of problem 

(1.1) near the plate everywhere other than at points on the z-axis (r : 0) If the expression 
for P from (1.9) is substituted in the Helmholtz equation (l.l), a discrepancy appears in the 

form of a product of the 8-function of r and the function of z, equal to the coefficient of 

lap,. This discrepancy may be eliminated using the second approximation of the solution of 

problem (1.1). 
Let us estimate the order of magnitude of the second approximation. For this purpose, 

we represent the solution of the initial equations (1.1) in the following form 

P = P, + P,, w = loo + w, 

where PO and uio denote the functions in (1.9). The equations for PI and u‘~ obtained by sub- 
stituting P and u,in (1.1) have the form 

(1.15) 

The order of magnitude of w1 with respect to 1~2 may be found by means of a Fourier trans- 
formation of the systems (1.1) and (1.15) in the plane of the plate. Integrating the ordinary 

differential equations in z relative to the mappings p(s,z~ and pl(s,z) and relating them to the 

mappings m (s) and zccI (s), then estimating the inverse transformations, retaining higher orders 
of the quantities, we arrive at the conclusion that, relative to UI.UJ~ constitutes (in the 

sense of a norm) a quantity on the order Renzin,~l, where a1 and aZ are the roots of the 

algebraic equation (1.4). Hence, our solution u‘~ is a good approximation for high enough 
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values of aI. This holds in the range of high and intermediate frequencies. 
proved only at low oscillation frequencies (Zkh<O.Oi). Note that this range of 
of the first approximation in our method extends the domain of application of 
obtained in /2,4/ and gives good results when kh@ 1. 

2. The method developed above can be generalized to oscillation problems 

235 

It may be im- 
applicability 
the solution 

in which the 

oscillations are induced by concentrated forces applied to anisotropic plates interactingwith 
a liquid. Previously developed methods for the case of isotropic plates are not efficient in 
this case. Without any limits on generality, we will consider an orthotropic plate, inwhich 
the operator DAp2 is replaced by 

where Di(i = 1,2,3) are the rigidity coefficients (see, for example /8/). In this case, equa- 
tion (1.1) may be solved by means of the plane wave method /9/. 

Let us represent the deflection of the plate, pressure in the liquid and b-function in 
the form of integrals of the plane wave 

Substituting these integrals in (1.1) and (1.2) and equating the integrands 
and right sides, we obtain a system of equations for a plane wave. When z=o, 
assumes the form 

ya (fi) -$ - Q4 (1-s $-) W = - & , s + (aa $ ka) W= 0 

y2 (fl) = D, cos’f~ + 20, co? /3 sin2fi + Da sin* 6, R4 = 2hp,,02 

(2.1) 

on the left 
this system 

(2.2) 

which is analogous to equations (1.3). The corresponding algebraic equations for the pressure 
attenuation indicators a also coincides in form with (1.4) and since YV) > 0 I remains an in- 
variant classification of its roots. Therefore, the solution (1.6) obtained for the case of 
oscillations of an isotropic plate affected by a linearly concentrated force may be used as a 
Green's function to solve the nonhomogeneous system (2.2) in the oscillation problem for an 
orthotropic plate subjected to a concentrated force. If expression (1.6) is denoted by wo(z, 

x0), the solution (2.2) is written in the form 

(2.3) 

The cylindrical rigidity of an isotropic plate D occurring in w,,(.c,xO) is replaced here 
by r"(p). Theintegrand w,(E, &,)Eo-'in (2.3) has an exponential singularity at the point so = 0,at 
which it is locally nonintegrable. As has been previously proved /9/, the integral of such a 
function may be treated as a Cauchy principal value. Applying the general rule to (2.3) we 
arrive at an integral of the form 

with integrable singularity at zero. 
Substituting expressions (1.6) in (2.4) and performing termwise integration, we arriveat 

an expression for w(E)in terms of the integral functions 

w=&[+ ibz co?; I, - bZFz - 1111 (b,,F1) 
I (2.5) 

F, = I;, (2,) ch z1 - e-': Shi (z,), 
1 F, = G(q) cos.q + Si (J,) sin I, 

El (zl)= $ -$ dt, Shi (cl) = 1 -$dt, 
I 

Si (r) - *+t 
:i n s 3 " 
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If in (2.2) we set the rigidity coefficients D, = D(i = i,2,3), we can prove that expres- 
sion (2.5) may be transformed into (1.9) for the case of the deflection of an isotropic plate 
in a liquid oscillating as a result of the effect of a concentrated force. 

By substutiting (2.5) in (2.1), we arrive at the required solution of the oscillation 
problem for an orthotropic plate in a liquid subjected to a concentrated force in the form of 

the quadrature of known functions. These functions cannot be integrated using standard tab- 

ular forms, and so integration is performed numerically. 

As an example, we present results of a computation using (2.5) for the case of a fibre 
glass-reinforced plastic plate lcm thick in contact with water and having the following elas- 

ticity parameters: E, =~ 2.%.111R N/cm2; F:,/E* = 1.35, I; = 0.346.i08 N/cm2; v2 = 0.13. and (lo/p = 1.7. The 
plate is excited by a concentrated force with frequency 1 kHz and amplitude 1 kN. 

Fig.2 

In Fig.2 may be found terms showing the variation of the 

imaginary part of the deflection wI along the orthotropicaxes 

I and y (curve I and 2) which, as in the isotropiccase, yields 

the principal contribution to the deflection value in a neigh- 

borhood of the point of application of the force. Here may al- 

so be found the nodal lines ~~~~ (because of the symmetryof the 

solution, these curves are presented only in the first quadrant 

of the zy -plane). The form of the curve may be approximated 

by ellipses oriented in the direction of maximal rigidity and 

having the semi-axis ja,.jh, (along r) and I",.//s~, (along!j).where 

jO,s (s = l,?.. ..) are the zeroes of the Bessel function Jo, bulb, = 

(E,/E,f’“. In the isotropic case (&= E?= E) , the nodal lines as- 

sume the form of concentrated circles with radii proportional 

to the roots jo,s. 

The method presented above for solving oscillationproblems 

occurring with infinite plates in a liquid excited by concent- 

rated forces may also be applied to construct solutions in the 

case of a plate subjected to a concentrated moment. From a 

previous study /5/, it follows that we may associate with the 

effect of a concentrated momentum the derivative of the 6- 

function in the same direction as the direction of the momentum. 

In this case, a solution of the system (1.1) is written in the 

form of the derivative along the corresponding directionofthe 

solution obtained from the case of actionof aconcentrated force. 
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